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Abstract-The steady laminar natural convective plume above a horizontal laser beam has been studied. The 
plume, which is caused by absorption of thermal energy from the beam, is three-dimensional. 

The three-dimensionality is a consequence of mass continuity and the variation in the thermal energy 
absorption in the propagation direction. Flow visualizations have verified the three-dimensionality in that a 
significant velocity component, in a direction opposite to that of laser beam propagation, was observed. 

The problem is reduced by similarity analysis to a system of ordinary differentia1 equations which are 
solved numerically for the Prandtl number, Pr = 1.0. Integral approximations are also presented for Pr = 
0.7, 1.0, 10.0 and 100.0. The effect of Pr on the velocities, and temperature boundary layer thicknesses is 

discussed in detail. 
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NOMENCLATURE 

defined to be an adiabatic line along 
which energy is transferred from the de- 
caying line source to the asymptotic re- 
gion (regime II) ; 
constant dimensionless scaling parameter 
which is related to the laser power 
generation ; 
specific heat of the fluid at constant 
pressure ; 
dimensionless y- or vertical-component 
of velocity defined in equation (5); 
dimensionless z- or axial-component of 
velocity defined in equation (5); 
Grashof number defined in equation (5); 
gravitational acceleration; 
thermal conductivity of the fluid ; 
dimensional similarity parameter, with 
units of [length] - ’ which is related to the 
fluid absorptivity ; 
dimensionless reference length in the z- 
direction for streamline projections (one 
of two parameters to be varied for each 
projection) ; 
dimensionless similarity parameter de- 
fined in equation (8); 
dynamic pressure; 
peak power of the laser beam ; 
Prandtl number of the fluid, WC-’ ; 
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local temperature excess relative to the 
ambient temperature; 
reference temperature defned in equation 

(5); 
velocity component in the x- or plume 
width-direction ; 
velocity vector; 
velocity component in the y- or vertical- 
direction ; 
velocity component in the z- or axial- 
direction ; 
dimensionless x-direction coordinate for 
streamline projections; 
lateral or plume width coordinate; 
vertical or plume height coordinate in the 
asymptotic region {regime II, see Fig. 1); 
vertical or plume height coordinate; 
axial or plume length coordinate in the 
asumptotic region (regime II, see Fig. 1); 
axial distance over which thermal energy 
is convected from the decaying line source 
to regime II (see Fig. 3); 
axial or plume length coordinate (laser 
propagation direction); 
absorptivity of the fluid medium at the 
wavelength of the laser beam ; 
thermal expansivity of the fluid; 
vector differential operator; 
dimensionless y-component velocity 
boundary layer thickness ; 
dimensionless thermal boundary layer 
thickness ; 
dimensionless z-component velocity 
boundary layer thickness; 
similarity independent variable defined in 
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equation (5) ; 
dimensionless similarity streamline para- 

meter (one of two parameters to be varied 
for each streamline projection); 

ratio of the similarity variable to the ~a- 
component velocity boundary layer 
thickness. 0 2 tri _< 1.0; 
ratio of the similarity variable to the 
thermal boundary layer thickness, 0 i: 11~ 
1 1.0; 
ratio of the similarity variable to the Z- 

component velocity boundary layer 
thickness, 0 < pJ I 1.0; 

dimensionless local temperature excess 
defined in equation (5); 
thermal diffusivity of the fluid; 
kinematic viscosity of the fluid ; 
ratio of the vertical velocity boundary 

layer thickness to the thermal boundary 
layer thickness; 
ratio of the vertical velocity boundary 
layer thickness to the z-direction velocity 

boundary layer thickness; 

density of fluid: 
delined in equations (12) and (16). 

IWRODUC-I’IO1 

LAMINAK natural convective flow above a horizontal 
laser beam results from absorption by the fluid of 

energy from the beam [ 1.21. Livingston [i] has given 
the most complete theoretical account, to date, of 
natural convective cooling of a fluid medium in the 
vicinity of a horizontal laser beam. He considered a 
uniform vertical forced flow through a beam whose 
thermally-induced optical distortion was determined 
by matching the forced flow solution to the well- 
known solution for a natural convection plume above 
a uniform line source of energy. Pr = 8 was used as an 

approximation for air. No direct comparisons were 

made between forced and natural convection. 
The laminar natural convection plume above a 

uniform horizontal line source of energy has been 
investigated by many authors [3--61 and formulated in 

an optimum manner by Gebhart er al. [3]. F‘ujii [4] 
presented one of the most comprehensive accounts of 
the laminar flow above horizontal line and point 

sources. 
In the present paper we present an analysis of the 

laminar natural convection plume above a thermal 
line source which decays exponentially along its 
length. This models the flow above a horizontal laser 
beam in an absorbing fluid. In addition to its general 
theoretical interest, this analysis will be useful in 
structuring a solution of the flow in the beam itself for 
prediction of thermal blooming of high-powered con- 
tinuous wave laser beams. 

FORMUI.ATION 

Consider the lIow induced in a fluid due to absorp- 

tion of thermal energy from a horizontal laser beam 

which propagates through it. The energy absorption 
will vary, to first approximation, exponentially along 
the direction of beam propagation. Hence, sufficiently 
far above the horizontal laser beam. the flow can be 
modeled as a natural convection plume caused by art 

exponentially-decaying horizontal line source of en. 
ergy. To distinguish it from a uniform line source. 11 

will be referred to as the ~Ircu),tn.~ iirtr .MUITCY 

In the steady laminar plume above a decaying line 
source, not only are there vigorous vertical and weaker 
lateral entraining velocity components, there is also a 

significant axial component of velocity. The quanti- 
tative analysis of the Bow regime above a horizontal 
laser beam, therefore, requires a three-dimensional 
analysis. The coordinate system for the formulation 1’; 
given in Fig. 1. 

Assumptions 

The usual Prandtl boundary layer approach is used ; 
that is, all gradients such as i’/?~,~ and ?2i?~Z will be 
neglected relative to ?‘,‘?s’ in the asymptotic region 
above the decaying line source (regime If). In addition. 
the following assumptions are made : 

(1) Ihe Boussinesq approximation applies, that is, a 
temperature-induced change in the density is only 

significant in the body force term. 

(2) All other fluid properties are constant. 
(3) All flow regimes are laminar. 
(4) The local thermal energy increase due to com- 

pression work is negligible. 
(5) Viscous dissipation is negligible. 
(6) The shift and/or deflection in the laser beam due 

to thermal blooming does not significantly affect flow 
regime II. 

(7) The effect of the irrotational flow outside the 

plume is neglected. 
(8) The dynamic pressure gradient, VP, IS negligible 

(see 17 and X]). 

Governing eyuutinrrs 

Based on the above assumptions, the govermng 
equations for the plume flow in the asymptotic region 
(regime II) above a horizontal laser beam, with 
quiescent surroundings, are given by 



Convection above a horizontal laser beam 687 

FLOW 

FIG. 1. Thermal plume flow regimes above a horizontal laser beam. 

which are applicable for large values of the Grashof 

number. The boundary conditions for the plume flow 

are 

x=0; 
au -=()=g; .=O=g; anrjT=finite 
ax 

aT 
x=m: o = 0 = w; - = 0; and u = finite 

ax (2) 

z=xl: 0 = 0 = w; and CT = 0 
ax . 

The above equations are valid for [8] 

Gr 2 E-~ (3) 

where E is a small positive parameter given by 

&-2=o -!.- 
( > Lo% 

(4) 

and Land u,, are the characteristic reference length and 

velocity in the y-direction. Equations (3) and (4) are 
valid when the buoyancy force, vertical inertia, and 
viscous forces are of comparable magnitudes. 

The partial differential equations (1) and (2) can be 
simplified to a set of ordinary differential equations 
when the following similarity transformations are used 

PI : 

v = bGr(~+1)/6Xy-1 e(m/2)Z 
u = b2,,Gr’“+1”3Y-’ e”Zf’(rl) 

w = b2(v/m)Gr(“f1)‘3Y-2 e”“f’(q) 

u = _ (&)bvG@+ 1)16y- 1 eCm/2)Zu(q) 

WV) = (n+l)F + (n-l)?/F’+f+ qf 

T = b4T,,Gri(2/3h- (l/3)le2mZe(rl) 
(5) 

where 

Gr = /lgToY3v-2 

m < 0. 

The prime (e.g. F’) denotes differentiation with respect 

to q, which is the dimensionless similarity variable. The 
quantity b is an unknown scaling factor which is 
related to the properties of the fluid and the power 

generation of the laser beam. The quantity m is related 
to the absorption coefficient of the fluid. After the 
similarity transformation from equation (5) are made 

in the governing equations and boundary conditions, 

the latter are simplified to the following form: 

F”’ - n(F)2 - f ‘F’ + ) (n + 1)FF” 

++F”+e=o 

f”’ - (f’)2 - (n - 1)f’F’ + +fS” 

+ )(n + 1)Ff” = 0 

8” + Pr[i (n + 1)W - (2n - 1)F’B 

+ )jW - 2f93 = 0 

where the boundary conditions are 

q = 0: F = 0 =J F” = 0 =f” and 0 = 1.0 

q=cr:: F’=O=f’andtI=O. 

(64 

(6b) 

(6~) 

(7) 

Following the procedure used by Gebhart et al. [3], for 
the uniform line source problem, e(O) is assumed 
arbitrarily to equal 1.0. These investigators noted that 
this is the optimum computational approach for 
solving the applicable differential equations. Many 
other procedures involving normalization (except that 



of normalizing the centerplane velocity) will either 
result in the addition of an extra equation or an 
additional unknown boundary condition to the 
numerical computation (cf. [3] with {4] and [6]). 

Following the procedure of Brand and Lahey [6], 
= P?‘ dx d;. (101 

the thermal energy equation (equation (6~1, was in- 
tegrated over the width of the plume, i.e., n = - x to Based on physical grounds. it appears reasonable 

Y_. After the boundary conditions are enforced, a that rT6, (6, is a dimensionless x-velocity component 

condition is obtained that defines the quantity, II. boundary layer (thickness) is proportional to exp 

which appears throughout equations (5) and (6) (-c(z). This means that the local energy transported 
vertically decays in the same manner in which energy is 
absorbed by the fluid from the laser beam. Using this 
and enforcing the conditions of similarity. equation 

(10) can be simplified to 

(I la) 
The quantity, n, is an eigenvalue which is determined 
from the Prandtl number ofthe fluid and the boundary and 
conditions for the plume flow. Since m and tz! are ~0 
(this is verified below) and since r and T are >O, it is 

noted thatf’, 8 and Fare all > 0. The right hand side of 
equation (9) is therefore negative, and hence the 

quantity n must be less than or equal to l/5, i.e. n I l/S. 
When n is equal to l/5, the numerator of equation (9) 

Equation (1 la) provides an expression for the scaling 

must vanish. This could result from two physical 
parameter b in terms of the Prandtl number and a 

situations : (1) the z-velocity component is zero. i.e.,,f“ 
dimensionless integral of the total energy convected 

= 0 = M;; or (2) a reverse flow exists above the 
vertically in the plume. Equation (1 lb) defines the 

decaying line source, i.e. above the laser beam. Whenj“ 
quantity, m, in terms of the absorptivity of the fluid. 

or w equal zero, there is no z-direction flow. This 
Equation (1 lc) is a relationship for the axial distance 

cannot be the case since flow visualizations were made 
over which energy is transported from a point on the 

of the plume above a horizontal laser beam and clearly 
decaying line source to a control surface located at z = 

show a z-velocity component (see Figs. Z(a), (b) and 
Z. Note that the parameter II remains in the for- 

(c)). In addition, no reverse flow was observed. It was, 
mulation as an eigenvalue. 

therefore, concluded that II does not equal l/5, but Integral formulation 
An integral analysis was used to obtain approximate 

solutions to equations (6) through (8). Polynomials 

were used to approximate the profiles of ail dependent 
Equations (5) through (8) reduce to those for the variables. The profile approximations are constructed 
uniform line source when m = 0 or n = 115. to satisfy the boundary conditions and then forced to 

satisfy various integrals of the governing equations. 
Global thermal energy equatiorr For the applicable boundary conditions, it is found 

In two-dimensional and axisymmetrical plume that the integral analysis must include three unknown 
flows, it is possible to write the global conservation of boundary layer thicknesses [S]. The profile approxi- 
energy in terms of the total power generated by the mations selected for F,f and 0 are 
power source and the energy convected and conducted 

across a given control surface, e.g. see [4, 5, 91. This 
global conservation of thermal energy usually serves 
two purposes : (1) the parameter )I can be determined 

explicitly; and (2) the scaling parameter b can be 
specified in terms of the total power generation. 
Although it is possible towrite such an equation for the 
flow in regime II (see Fig. l), it is not possible to use it 
to determine explicitly the unknown parameters n and 
b. The reason is that because of the three- 
dimensionality of the flow, we do not know a priori the 

Here,O<qi 2 l;O<q2< l;andO<q,< l;and6, 

point of origin, along the line source. of thermal energy 
and a3 are boundary layer thicknesses for velocities t‘ 

which is transported across the control volume at its 
and w, and 6, is the thermal boundary Iayer thickness. 

boundary 4’ = Y, z = Z + Z,. Hence, we must write 
Since the I’- and z-components of velocity decrease 
monotonically with increasing values of q, it has been 

the conservation of energy for the control volume assumed that f”(s,) = 0 = F‘“(6,). Equation (6) is 
shown in Fig. 3 with Z, as a parameter I _ evaluation at ~7 = 0 and after simplifications are made, 
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FIG.~@). Streakline projection. in ther ~‘plane,doc to~ncrgy absorpri<ln lr~v~: .s w: 1,. */ :.$I. wOmW, He-Ne 
laser beam (blocked briefly during exposure). Beam ic: d~rec~~‘d L)u 4’ ” I” p;i:c 

(Fluid is water in these projections I 

FIG. 2(b). Streakfine projection. m the) z plane, due toenergyabsorption from :i h~r~~,-n~:!i. 70 mW, He-NC 
laserb~.Thel~~er beam isdirectedfrom right to left. Note ihar thelincof~rapn.~r~~~n &the \erticalve&tty 

is below the laser beam. 

FIG. 2(c). Streakline projection,m the I--: plane, due toenergy absorption from :L hL)r17x)ntill. 200 mW, argon 
laser beam. The laaet bcarn is directed from the bottom to lhe top ot the photograph 
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the following results are obtained : 

-2Oz, - 2% - 255,rr, + x2 = 0 (13a) 

-2072, - 25x,<; - 25(n - l)<;’ = 0 (13b) 

2PF’7c& + 5(n - :, + 5n,4, = 0 (lk) 

where co and <, are boundary layer thickness ratios 

which are defined by 

6, 6, 
<,=iizandt, =(r,. (14) 

In addition, x2 is related to the ratio of the buoyancy 
body force to the _r-component of inertia force as- 
sociated with L’, i.e. 

8gT s: = 0) -. 
‘= =nmx=o A2 

(15) 

Further, the quantity, xi, is equal to the ratio of the 

stream functions at 9 = X, and is defined by 

Finally, the quantity, n3, is defined as 

rrj = A-‘&‘. (17) 

The remaining equations necessary for completion 

of the integral formulation are obtained by integrating 

each of the governing equations, from equation (6), 

over the appropriate boundary layer thickness 

(n + +)I, + ~17c,12 - +7t2&‘Z3 = 0 (18a) 

[27d,Q" + (n+lFQ'+ nIQQ'l/,,=l 
- 3n,I, - (3n - l)<;’ I, = 0 (lgb) 

(n - :)I6 + rc,[,I- = 0 (18c) 

‘D-- 

Regime II 

FIG. 3. Control volume for global energy balance above the 
horizontal decaying line source model; A.T. = Adiabatic 

Trajectory (see nomenclature). 

where all quantities such as I, (k = I, 2.3, I represent 
integrals of convective or body force terms and are 
given in the Appendix. Equations (ISa) and (18b) can 
be solved for n1 and n in terms of the other unknowns 

(see equation (Ag)). 

Numrricul computations 

A numerical solution of equations (6) through (8) 

was computed for Pr = 1.0. The numerical integratton 
procedure is based on the Hamming’s modified 
predictor-corrector method [lo] and the iterative 
procedure is based on the sequential simplex method 
[ll]. The numerical procedure consists of converting 
the boundary value problem to an initial value 

problem by systematically guessing the conditions 

F’(0) and .f”(O). Unfortunately. in addition to not 
knowing Y(O) andf”(O), the quantity n is not known 

explicitly. so a search of a complicated parameter 

space is required. 
For all numerical computations, a residual error 

function was defined as the linear sum of the absolute 
values of F’,J’ and 0 and their derivatives at 17 = J-. 

The definition of the quantity n (equation (8)) was also 
included as part of the residual function. The residual 

function must be zero when the exact solution is found. 
As an independent check on the accuracy of the 

computations. the integrals of the V- and =-momentum 
equations ((6a) and (6b)) were evaluated and found to 
be very near zero, providing evidence that the pro- 
cedure has converged close to the exact solution. 

The computed profiles for F’,J” and 0, for Pr = 1 .(I. 
are given in Fig. 4. The numerical computations are 
approximate sincef’( X) did not precisely converge to 

zero as r) became very large. The condition,f’( K ) == 0. 

Ftc,. 4. Results from numerical computations Ior the dimen- 
sionless profiles of the temperature excess and velocity 
components in the plume above a horizontal decaying line 

Yource with Pr = Ii): ~7 ~~: --0.24916. 
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results from the requirement that u(co, y, z) must 
remain finite. In the numerical computations,f’ ap- 
proached a small negative number as 1 became large. 
An asymptotic analysis [8] of F’, 0 andf’ shows that all 
these quantities must become asymptotically small as 
v approaches infinity. The difficulty in the numerical 
computations is attributed primarily to the uncer- 
tainty of the quantity n. Since n appears throughout 
the governing equations, its effect on the solution is 
critical. 

A more accurate solution would require consider- 
ation of the interaction with the irrotational flow 
outside the plume. In fact, in the flow visualizations of 
the x-z plane, it was observed that at the edge of the 
plume, the axial (z-) component of velocity is not equal 
to zero, but is slightly negative. This implies thatf’( cc) 
is greater than zero (note that m < 0) and that higher- 
order effects due to the external flow must be con- 
sidered (e.g. [12] and [13]). 

Integral analysis 
Equations (13) and (18) form a system of non-linear 

algebraic equations with unknowns: n, zl, Q, z3, &, 
and <r. The sequential simplex optimization pro- 
cedure [ 1 l] was used to solve the algebraic equations. 
This procedure required two independent variables (tl 
and 12). A residual error function was defined as the 
sum of equations (13a) and (13b). The residual func- 
tion was minimized after repeated iterative com- 
putations. The constraints on the iterative procedure 
are 

n,, nz, n3 and (f - n) > 0. (19) 

Profiles for functions associated with the y- and z- 
components of velocity and the temperature are 
presented in Figs. 5(a)-5(c), for various values of the 
Prandtl number, Pr. The magnitude of the vertical 
component above the decaying line source decreases 
with an increase in the Prandtl number, as it does in the 
case of a uniform line source. However, the axial 
component of velocity, w, increases with an increase in 
Pr, if Pr I 10, but decreases with an increase in Pr, if Pr 
2 10. The latter decrease in w is due to viscous 
diffusion effects. The local temperature gradient in- 
creases throughout the plume as Pr increases. 

The effects of the diffusion of energy and momentum 
vary with Pr and can be evaluated by considering how 
the boundary layer thicknesses vary with Pr. Both the 
dimensionless vertical velocity and thermal boundary 
layer thicknesses decrease continually as Pr increases 
from 0.7 to 100.0. This indicates that x-direction 
diffusion of vertical momentum and thermal energy is 
becoming increasingly important as Pr increases. 
However, the dimensionless axial velocity boundary 
layer thickness increases slowly as Pr increases from 
0.7 to 100.0. This indicates that x-direction diffusion of 
axial momentum is approximately constant for at least 
a two-order-of-magnitude change in the Prandtl 
number. Finally, for 1.0 I Pr < 10.0, &, is near 1.0 
(f 10%) which indicates that for this range of Pr, the 

1.6 

t 

F’ 

0.0 1.0 2.0 3.0 4.0 5.0 
n 

FIG. 5(a). Integral approximation profiles for the dimension- 
less vertical velocity component in the plume above a 
horizontal decaying line source, with the Prandtl number as a 

parameter. 

l.2L----7 

FIG. 5(b). Integral approximation profiles for the dimension- 
less axial velocity component in the plume above a horizontal 
decaying line source, with the Prandtl number as a parameter. 

thermal and the vertical velocity boundary layer 
thicknesses are approximately equal. A summary of 
the integral approximation results is presented in 
Table 1. 

To display the predicted fluid motion, we assumed 
that all boundary layer thicknesses were equal for Pr 
= 1.0. This assumption simplifies the algebra and 
requires that the dimensionless axial velocity,f’, and 
axial shear stress,f”, be non-zero at the edge of the 
boundary layer. The streamline projections in the x-z 
plane and the boundary layer are presented in Fig. 6. 
Note that the flow is in a direction opposite to that of 
laser beam propagation. The slight flow reversal near 
the edge of the boundary layer is a result of the 
boundary conditions at q = 6,, which must be related 
to the vortex flow outside the plume. 
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0.6 - 

ri - 

0.4 - 

FIG. 5(c). Integral approximation profiles for the dimensionless temperature excess in the plume above a 
horizontal decaying line source, with the Prandtl number as a parameter. 

Some qualitative comparisons of the three- 

dimensional flow above a decaying line source with the 
two-dimensional flow above a uniform line source are 
useful. Since the quantity n is less than one-fifth, the 

temperature in the plume will decay faster in the 
vertical direction above the decaying line source than 

above the uniform line source. In cases where n > 0, 

the vertical component of velocity above the decaying 
line source will increase more slowly above the decay- 
ing line source than above the uniform line source. For 

n < 0, the vertical component of velocity decreases, 

with increasing y, above the decaying line source. As Pr 
increases, some trends are similar for both line sources : 
(1) the vertical velocity decreases throughout the 

plume; (2) the thermal and vertical velocity boundary 
layers decrease in thickness; and (3) the ratio of the 
vertical velocity boundary layer thickness to thermal 

boundary layer thickness increases continuously. 
Finally, a conceptual description of the decaying 

line source will be given to supplement the above 

discussion. If the decaying line source is interpreted as 
a series of colinear point generators of decreasing 
strength, one realizes that the vertical and entraining 

components of velocity will be greater for the point of 
higher power. The entraining axial velocity, due to the 
point of higher power, will be greater and opposite in 
sense (in the axial or z-direction) than the entraining 
velocity of the adjacent weaker power generating 
point. The result is a small but finite component of 
velocity in the negative z-direction. When this effect is 

integrated over the length of the decaying line source, 
the result is a significant axial component of vjelocity. 
Therefore, the axial velocity component is a con- 
sequence of continuity, and is controlled by the local 
laser beam power generation and the effects of viscous 

diffusion. 

Table 1. Results from the integral approximation for the decaying line source: O(O) = 1.0 

Pr 0.7 I .o IO.0 100.0 

0.885 0.930 1.10 4.59 
2.14 2.02 1.81 0.52 

- 0.0841 -0.145 - 0.435 - 0.0455 
0.240 0.289 0.509 0.45’) 

13.8 14.4 16.1 16.5 
0.153 0.169 0.193 3.57 
0.317 (I.359 0.579 0.0x21 
1.32 1.24 1.13 0 178 
4.91 4.72 4.56 1.56 
5.55 5.07 4.13 0.340 
2.29 2.32 2.51 2.95 
1.34 1.31 1.24 0.57 t 
0.69 0.772 1.15 0. I30 
2.03 I .R9 1.62 0.336 

52.1 41.9 18.8 1793.0 

0.515 0.586 0.926 0.243 

% PST -=- - 164.5 -99.2 
n u(dt@l’) X = 0 

~ 37.0 -~ 1679.0 
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(mzl 
2. 

I I 1 

F- 4 PLANE OFSYMMETRY (y-zplaneI 

t 

FLOW DIRECTION 

HORIZONTAL LASER BEAM 
PROPAGATION DIRECTION 

-BOUNDARY LAYER 

IX/P) 

FIG. 6. Streamline projections in the x-z plane of the plume 
above a horizontal decaying line source, with Pr = 1.0 and <a 

= <, = 1.0. 
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APPENDIX 

Integrals of convective and body force terms 

640 
(AlI 

(A-3 

(A3) 

(A4) 

(A5) 

(‘46) 

Lls;L 2 1 

I, = (A7) 

H, = D,D-‘andn = D,D-’ 

where 

(‘48) 

D=<;‘[I,I;’ - I&‘], D, = 2161s(15{;141,)-’ 

and 

D2=1,(51,<,)-’ - 1,(35,1,)-i. 

CONVECTION NATURELLE LAMINAIRE AU-DESSUS DUN 
RAYONNEMENT LASER HORIZONTAL 

R&me&On etudie le panache de convection naturelle, permanente, laminaire au-dessus d’un rayon laser 
horizontal. Le panache provoque par I’absorption de l’energie thermique du rayon est tridimensionnel. La 
tridimensionnalite est une consequence de la continuitt de la masse et de la variation de l’absorption de 

I’energie clans la direction de propagation. Des visualisations d’tcoulement ont virifit cette tridimensionnal- 
ite car on observe une composante de vitesse dans la direction oppos&e a celle de la propagation du laser. 

Le probleme est reduit par une analyse de similitude a un systeme d’tquations ditlerentielles qui sont 
resolues numeriquement pour le nombre de Prandtl Pr = l,O. Des approximations integrales sont aussi 
presentees pour Pr = 0,7,1,10 et 100. On discute en detail I’effet de Pr sur les dpaisseurs des couches limites 

dynamique et thermique. 
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LAMINARENATCIRLICHE~~NVEKTION UBEREINEM 
HORI~ONTALEN LASERSTRAHL 

Zu~mmenfassung-Untersucht wurde die stationare laminare Auftriebsstromung durch natdrliche Kon- 
vektion iiber einem horizontalen Laserstrahl. Die Auftriebsstromung, die durch Absorption thermischer 
Energie des Strahls verursacht wird, ist dreidimensional. 

Die Dreidimensionahtat folgt aus der Kontinuitatsgleichung und der Veranderung der thermischen 
Energieabsorption in Ausbreitungsrichtung. Durch Sichtbarmachung der Stromung wurde die Dreidimen- 
sionalit2 best&i@, wobei eine bedeutende Geschwindigkeitskomponente in entgegengesetzter Richtung 

zur Laserstrahlausbreitung beobachtet wurde. Das Problem wird durch ~hn~ichkeitsbetrachtun~ auf ein 
System gewohnlicher Differentiaig~eichungen reduziert, die numerisch fur die Prandtl-Zahl. Pr 7 1.0 gel&t 
werden. Integrale Approximationen werden such fur Pr = 0.7 ; 1,O: 10.0 und 100,O angegeben. Der EinfluB 

von Pr auf die Geschwindigkeiten und Temperaturgrenzschichtdicken wird ausfiihrlich eri(rtcrt 

Armor aumr kkL’;le,lyeTCx Cl~UMoHLtpHOC !l;tMMHLtptloe CBOi)O!lttOk.OtlBCKtMRHOe ,C'lCHMe H;l,, ,Opt,- 


